HEREDITARY PROPERTIES OF THE CLASS OF CLOSED SETS OF UNIQUENESS FOR TRIGONOMETRIC SERIES

RY

ALEXANDER S. KECHRIST

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

ABSTRACT

It is shown that the σ -ideal U_0 of closed sets of extended uniqueness in **T** is hereditarily non-Borel, i.e. every "non-trivial" σ -ideal of closed sets $I \subseteq U_0$ is non-Borel. This implies both the result of Solovay, Kaufman that both U_0 and U (the σ -ideal of closed sets of uniqueness) are not Borel as well as the theorem of Debs-Saint Raymond that every Borel subset of **T** of extended uniqueness is of the first category. A further extension to ideals contained in U_0 is given.

§1. Introduction

Let $T = \mathbb{R}/2\pi\mathbb{Z}$ be the unit circle. A subset $P \subseteq T$ is called a set of *uniqueness* if every trigonometric series converging to 0 on T - P is identically 0 and is called a set of *extended uniqueness* if this uniqueness property holds for the trigonometric series which are Fourier-Stieltjes series $\sum \hat{\mu}(n)e^{inx}$ of (finite Borel) measures on T.

Let $K(\mathbf{T})$ be the compact, metric space of closed subsets of \mathbf{T} with the Hausdorff metric. We denote by U the class of $E \in K(\mathbf{T})$ which are sets of uniqueness and by U_0 the class of $E \in K(\mathbf{T})$ which are sets of extended uniqueness. Let also $M = K(\mathbf{T}) - U$ and $M_0 = K(\mathbf{T}) - U_0$ be the classes of closed sets of multiplicity and restricted multiplicity, resp.

It has been shown by Solovay (see, e.g., [6]) and Kaufman [4] that the classes U, U_0 are complete coanalytic (Π_1^1) and thus, in particular, non-Borel in the space $K(\mathbf{T})$. On the other hand, Debs-Saint Raymond [2] have shown that every Borel set of extended uniqueness is of the first category, thereby solving N. Bary's Cat-

†Research partially supported by NSF Grant DMS-8718847. Received October 3, 1989 and in revised form October 9, 1990 egory Problem (see [1]). For more on these recent results on the theory of sets of uniqueness and its relations with descriptive set theory, see [6].

The main purpose of this paper is to prove a rather surprising hereditary definability property of the class U_0 , which in particular implies both the above results.

Recall that a σ -ideal of closed sets is a class $I \subseteq K(\mathbf{T})$ such that (i) $(E, F \in K(\mathbf{T}); E \subseteq F \in I) \Rightarrow E \in I$, i.e. I is hereditary, and (ii) $(E, E_n \in K(\mathbf{T}); E = \bigcup_n E_n, E_n \in I) \Rightarrow E \in I$, i.e. I is closed under countable unions, which are closed. We denote below by M_0^P the class of $E \in K(\mathbf{T})$ of pure restricted multiplicity, i.e. those for which $\overline{E \cap V} \in M_0$ for every open interval V with $E \cap V \neq \emptyset$. For $E \in K(\mathbf{T})$, $K(E) = \{F \in K(\mathbf{T}) : F \subseteq E\}$.

THEOREM 1. Let I be a σ -ideal of closed sets, $I \subseteq U_0$. Then I is not analytic (Σ_1^1) , provided it satisfies the following non-triviality condition: For some $E \in M_0^p$, $E \neq \emptyset$, $I \cap K(E)$ is dense in K(E). (For example, this is satisfied if $\{x\} \in I$ for all $x \in D$, D some dense subset of E.)

In particular, if $K_{\omega}(\mathbf{T})$ is the σ -ideal of countable closed subsets of \mathbf{T} , there is no Σ_1^1 σ -ideal I with $K_{\omega}(\mathbf{T}) \subseteq I \subseteq U_0$. So if such an I is $\mathbf{\Pi}_1^1$, then by the Dichotomy Theorem of [7], I is complete $\mathbf{\Pi}_1^1$. Thus U_0 is hereditary $\mathbf{\Pi}_1^1$ -complete.

Theorem 1 clearly includes the theorem of Solovay and Kaufman. To see that it implies also the Debs-Saint Raymond result, let P be a Borel set of extended uniqueness and assume P is of the second category towards a contradiction. Then let V be an open interval and $G \subseteq V$ a dense G_{δ} in V with $G \subseteq P$. Then $K(G) = \{E \in K(T) : E \subseteq G\}$ is G_{δ} in K(T) and $K(G) \subseteq U_0$. But for $E = \overline{V}$, if D = G then D is dense in E and for all $X \in D$, $\{X\} \in I$, so this violates Theorem 1.

The proof of Theorem 1 combines methods of Körner (see [3], p. 118) and Kaufman [5] (see also [6], p. 239) along with results of Kechris-Louveau [6], p. 274. One can also use the proof of Theorem 1 to show the following extension.

THEOREM 2. Let $I \subseteq U_0$ be hereditary G_δ and assume $I \cap K(E)$ is dense in K(E) for some $E \neq \emptyset$, $E \in M_0^p$. Let I_f be the class of finite unions of sets from I. Then there is no G_δ set G with

$$I_f \subseteq G \subseteq U_0$$
.

By the Hurewicz-type theorem proved in [7] (see also [6], p. 133) this is equivalent to saying that there is a homeomorphic copy F of the Cantor space 2^N with $F \subseteq I_f \cup M_0$ and $F \cap I_f$ countable dense in F. For example, this implies that if $Q \subseteq 2^N$ is countable dense, there is continuous $f: 2^N \to K(T)$ such that

 $x \in Q \Rightarrow f(x)$ is a finite union of Kronecker sets, $x \notin Q \Rightarrow f(x)$ is an M_0 -set.

(Recall that a Kronecker set is a closed set $E \in K(\mathbf{T})$ such that for every continuous $f: E \to \mathbf{T}$ and every $\epsilon > 0$ there is $n \in \mathbf{Z}$ with $||e^{inx} - f(x)|| < \epsilon$, $\forall x \in E$. The class of Kronecker sets is a hereditary dense G_{δ} in $K(\mathbf{T})$ (see [6], p. 337).

It follows also from Theorem 2 that there is no G_{δ} ideal $I \subseteq U_0$ which is dense in K(E) for some $E \in M_0^p$, $E \neq \emptyset$. (An ideal is a hereditary, closed under finite unions class.) This is not, however, a real strengthening of Theorem 1 in view of the following general result.

THEOREM 3. (Dougherty-Kechris, Louveau). Let E be a compact, metrizable space. If $I \subseteq K(E)$ is a G_{δ} ideal, then I is a σ -ideal.

We conclude with the following interesting problem, an affirmative answer to which would give also a different proof of Theorem 1:

Let E be compact, metrizable and $I \subseteq K(E)$ a G_δ σ -ideal of closed sets on E. Assume I contains all singletons or just all singletons in a dense subset of E. Is there a dense G_δ set $G \subseteq E$ such that $K(G) \subseteq I$?

§2. Proof of Theorem 1

The key to the proof is the following lemma which might be of interest in its own sake. Its proof uses methods of Körner (see [3], p. 118) and Kaufman ([5], or see [6], p. 239).

Below, a *Rajchman measure* on **T** is a measure μ with $\hat{\mu}(n) \to 0$ as $|n| \to \infty$. The closed support of a measure is denoted by supp (μ) . Finally, $\| \cdot \|_{PM}$ denotes the pseudomeasure norm, i.e. $\| \rho \|_{PM} = \sup\{ |\hat{\rho}(n)| : n \in \mathbb{Z} \}$.

LEMMA 2.1. Let μ be a probability Rajchman measure on T with support $\operatorname{supp}(\mu) = E$. Let $I \subseteq K(E)$ be G_{δ} hereditary and dense in K(E). Then, given N > 0, $\epsilon > 0$ there is a probability measure ν with $\operatorname{supp}(\nu) = E_1 \cup \cdots \cup E_N$ where $E_i \in I$ $(1 \le i \le N)$ and $\|\mu - \nu\|_{PM} \le (1 + \epsilon)/N$.

PROOF. We will define probability Rajchman measures μ_k and integers n_k such that

- (1) $0 < n_0 = n_1 = \cdots = n_{N-1} < n_N < n_{N+1} < \cdots$,
- (2) $\mu_0 = \mu_1 = \cdots = \mu_{N-1} = \mu$,
- (3) $(|j| \le n_{k+N-1} \lor |j| \ge n_{k+N}) \Rightarrow |\hat{\mu}_{k+N}(j) \hat{\mu}_k(j)| \le \frac{1}{2} \epsilon \cdot 2^{-k-1},$
- (4) $n_k \leq |j| \Rightarrow |\hat{\mu}_k(j)| < \epsilon/2$,

- (5) $\operatorname{supp}(\mu_{k+N}) \subseteq \operatorname{supp}(\mu_k)$,
- (6) supp $(\mu_{n+kN}) \in G_k$, k = 1, 2, ..., n = 0, ..., N-1, where $I = \bigcap_{k=1}^{\infty} G_k$, G_k decreasing and open, hereditary,
- (7) supp $(\mu_k) = \bigcup_{i=1}^{P_k} A_i^{(k)}$, where $A_i^{(k)} = E \cap \overline{I_i^{(k)}}$, $\{I_i^{(k)}\}_{i=1}^{P_k}$ open intervals with $E \cap I_i^{(k)} \neq \emptyset$ and $\overline{I_i^{(k)}} \cap \overline{I_j^{(k)}} = \emptyset$, if $i \neq j$.

The construction is by induction. Assume it has been done up to k + N - 1 (k = 0, 1, 2, ...). We will construct μ_{k+N}, n_{k+N} . Let $E_k = \text{supp}(\mu_k)$.

Fix a finite set of pairwise disjoint open intervals I_1, \ldots, I_m with $E_k \subseteq \bigcup_{i=1}^m \bar{I}_i$, $E_k \cap I_i \neq \emptyset$, such that if ρ, σ are Rajchman probability measures with supp (ρ) , supp $(\sigma) \subseteq \bigcup_{i=1}^m \bar{I}_i$ and $\rho(I_i) = \sigma(I_i)$ $(i = 1, \ldots, m)$, then

$$|j| \leq n_{k+N-1} \Rightarrow |\hat{\rho}(j) - \hat{\sigma}(j)| \leq \frac{1}{2} \epsilon \cdot 2^{-k-1}.$$

(For the reader's convenience, we explain how these intervals can be found—the argument coming from Körner's proof in [3], p. 118. By direct calculations, if ρ , σ are positive measures and I = [t - d, t + d] is an interval with $\rho(I) = \sigma(I)$, then

$$\left| \int_{I} e^{-inx} d\rho(x) - \int_{I} e^{-inx} d\sigma(x) \right| = \left| \int_{I} (e^{-inx} - e^{-int}) d(\rho - \sigma)(x) \right|$$

$$\leq 2\rho(I) \max_{x \in I} |e^{-inx} - e^{-int}|.$$

So one simply chooses the I_1, \ldots, I_m to have sufficiently small length.)

By (7), I is dense in $K(E_k)$ as well, so let $K \in I$, $K \subseteq E_k$ be such that $K \cap I_i \neq \emptyset$, i = 1, ..., m. If k = n + lN ($0 \le n \le N - 1$, $l \ge 0$), $K \in G_{l+1}$, so find open V with $K \in K$ ($V \cap E_k$) $\subseteq G_{l+1}$ (this can be done since G_{l+1} is open hereditary). Let then $J_1, ..., J_m$ be open intervals with $\bar{J}_i \cap \bar{J}_j = \emptyset$ if $i \ne j$, $\bar{J}_i \subseteq I_i$, $\bigcup_{i=1}^m \bar{J}_i \subseteq V$ and $E_k \cap J_i \neq \emptyset$ for i = 1, ..., m. Define the probability measure μ_{k+N} to have support

$$E_k \cap \bigcup_{i=1}^m \bar{J}_i (\subseteq E_k \cap V)$$

and

$$\mu_{k+N} \upharpoonright \bar{J}_i = \mu_k \upharpoonright \bar{J}_i \cdot \frac{\mu_k(I_i)}{\mu_k(J_i)}.$$

Since μ_k is a Rajchman measure, so is μ_{k+N} (as $\mu_{k+N} \ll \mu_k$) and (7) is clearly satisfied, as well as (5), (6). Now

$$\mu_{k+N}(I_i) = \mu_k(I_i \cap \bar{J}_i) \cdot \frac{\mu_k(I_i)}{\mu_k(J_i)}$$
$$= \mu_k(J_i) \cdot \frac{\mu_k(I_i)}{\mu_k(J_i)} = \mu_k(I_i)$$

(recall that Rajchman measures are continuous), so (3) is satisfied for $|j| \le n_{k+N-1}$. Finally, choose $n_{k+N} > n_{k+N-1}$ large enough so that the second part of (3) and also (4) for n_{k+N} , μ_{k+N} are satisfied.

Put now $\mu^n = \lim_{l=1}^{w^*} \mu_{n+l+N}$, for n = 0, 1, ..., N-1. Then $\operatorname{supp}(\mu^n) \subseteq \operatorname{supp}(\mu_{n+lN}) \in G_l$, for $l \ge 1$, so $\operatorname{supp}(\mu^n) \in I$. Let $\nu = (1/N)(\mu^0 + \cdots + \mu^{N-1})$. Then if $E'_i = \operatorname{supp}(\mu^{i-1})$, i = 1, ..., N, $\operatorname{supp}(\nu) \subseteq E'_1 \cup \cdots \cup E'_N$, so $\operatorname{supp}(\nu) = E_1 \cup \cdots \cup E_N$, where $E_i = \operatorname{supp}(\nu) \cap E'_i \in I$.

Also, for each j, $|\hat{\mu}(j) - \hat{\nu}(j)| \le (1/N) \sum_{k=0}^{\infty} |\hat{\mu}_{k+N}(j) - \hat{\mu}_{k}(j)|$. But

$$|\hat{\mu}_{k+N}(j) - \hat{\mu}_k(j)| \le \frac{1}{2} \epsilon \cdot 2^{-k-1}, \quad \text{if } |j| \le n_{k+N-1} \text{ or } |j| \ge n_{k+N}$$

and (as $n_k < n_{k+N-1}$), if $n_{k+N-1} < |j| < n_{k+N}$, then $|\hat{\mu}_{k+N}(j) - \hat{\mu}_k(j)| \le 1 + \epsilon/2$. So

$$\begin{split} |\hat{\mu}(j) - \hat{\nu}(j)| &\leq \frac{1}{N} \cdot \left(1 + \frac{\epsilon}{2} + \sum_{k=0}^{\infty} \frac{\epsilon}{2} \cdot 2^{-k-1} \right) \\ &= \frac{1}{N} \cdot (1 + \epsilon), \end{split}$$

i.e.,

$$\|\mu - \nu\|_{PM} \leq \frac{1}{N} \cdot (1 + \epsilon).$$

Denote for each $E \in K(\mathbf{T})$,

 $\eta_0(E) = \inf\{R(\mu) : \mu \text{ a probability measure whose support is contained in } E\},$

where $R(\mu) = \overline{\lim} |\hat{\mu}(n)|$.

The following follows immediately from Lemma 2.1.

COROLLARY 2.2. Let I be hereditary G_{δ} in $K(\mathbf{T})$ and assume I is dense in some K(E), $E \in M_0^p$, $E \neq \emptyset$. Then for every $\epsilon > 0$ there is $F \in K(\mathbf{T})$, where $F = F_1 \cup \cdots \cup F_n$ with $F_i \in I$ $(i = 1, \ldots, n)$ and $\eta_0(F) < \epsilon$.

PROOF. As $E \in M_0^p$ there is a Rajchman measure μ with supp $(\mu) = E$ (see [6], p. 269). Let ν be as in Lemma 2.2 and put $F = \text{supp}(\nu)$.

Finally, we have

THEOREM 2.3. If I is hereditary G_{δ} in $K(\mathbf{T})$ and I is dense in some K(E), where $E \in M_0^p$, $E \neq \emptyset$, then

$$I \subseteq U_0 \Rightarrow I_\sigma$$
 is not Σ_1^1

where I_{σ} is the σ -ideal of closed sets generated by I.

In particular, Theorem 1.1 holds.

PROOF. Since every portion $E' = \overline{E \cap V}$, V open interval, $V \cap E \neq \emptyset$ is in M_0^p and I is dense in K(E'), it follows from Corollary 2.2 that in each portion of E there are sets in I_{σ} with arbitrarily small η_0 and thus with $\eta_0 = 0$. By Theorems VI.1.6 and VIII.2.1 of [6] it follows that there are sets in I_{σ} of arbitrarily large U_{σ} -rank (see [6], p. 281). By the boundedness theorem for Π_1^1 -ranks (see [6], p. 148) it follows that I_{σ} cannot be Σ_1^1 .

To prove Theorem 1.1, notice that if I is as in the statement of that theorem and is Σ_1^1 , then by [7], I is actually G_{δ} , so since $I = I_{\sigma}$, we have a contradiction.

REMARK. Lemma 2.1 can be viewed as an abstract version of the following result of Körner and Kaufman: For each N there is a finite union of N Kronecker sets $F = F_1 \cup \cdots \cup F_N$ so that F is independent (over the rationals) and $\eta_0(F) \le 1/N$ —recall that for a Kronecker set E, $\eta_0(E) = 1$ (see, e.g., [6], p. 338). By applying Lemma 2.1 to E, an independent M_0^P -set (which exists by a result of Rudin, see [3]) and $I \subseteq K(E)$ the class of Kronecker subsets of E, which is a G_δ hereditary dense subset of K(E), one obtains the above with $\eta_0(F) \le 1/N + \epsilon$.

§3. Proof of Theorem 2

We will base the proof on the following lemma.

LEMMA 3.1. Let \mathfrak{J} be an ideal of closed sets in $K(\mathbf{T})$. Assume that for some $E \in M_0^p$, $E \neq \emptyset$ and every open V with $E \cap V \neq \emptyset$ and $\epsilon > 0$ there is $F \in \mathfrak{J}$ with $F \subseteq \overline{E \cap V}$ and $\eta_0(F) < \epsilon$. Then there is no G_δ set with $\mathfrak{J} \subseteq G \subseteq U_0$.

From this and Corollary 2.2, one obtains immediately Theorem 2.

PROOF OF LEMMA 3.1. We will need first the following sublemma.

LEMMA A. Let $G \subseteq K(\mathbf{T})$ be hereditary G_{δ} , say $G = \bigcap_n G_n$, $G_n \supseteq G_{n+1}$ where G_n is open, hereditary in $K(\mathbf{T})$. Assume $E \in M_0^p$, $E \neq \emptyset$ and each G_n has the following density property.

(*) For every Rajchman probability measure μ supported by E, for every $\epsilon > 0$ and every open V such that $\operatorname{supp}(\mu) \subseteq V$, there is a Rajchman probability measure ν with $\operatorname{supp}(\nu) \subseteq E \cap V$, $\operatorname{supp}(\nu) \in G_n$ and $\|\mu - \nu\|_{PM} < \epsilon$.

Then G has also the same density property (*). In particular, G contains an M_0 -set.

PROOF. Fix μ , V, ϵ as in (*). Find a Rajchman probability measure μ_1 with $\operatorname{supp}(\mu_1) \subseteq E \cap V_0$, where $V_0 \subseteq \overline{V_0} \subseteq V$, V_0 open, $\|\mu_1 - \mu\|_{PM} < \epsilon/2$ and $\operatorname{supp}(\mu_1) \in G_1$. Since G_1 is hereditary open, find open V_1 such that $\operatorname{supp}(\mu_1) \subseteq V_1$ and $K(\overline{V_1}) \subseteq G_1$. Thus $\operatorname{supp}(\mu_1) \subseteq V_0 \cap V_1 \cap E$. Let now μ_2 be a Rajchman probability measure with $\operatorname{supp}(\mu_2) \subseteq V_0 \cap V_1 \cap E$, $\|\mu_2 - \mu_1\|_{PM} < \epsilon/4$ and $\operatorname{supp}(\mu_2) \subseteq V_2$ with $K(\overline{V_2}) \subseteq G_2$. Then $\operatorname{supp}(\mu_2) \subseteq V_0 \cap V_1 \cap V_2 \cap E$, etc. Clearly, $\mu_n \to \nu$ in PM, where ν is a Rajchman probability measure. Also, $\operatorname{supp}(\mu_n) \subseteq \overline{V_0} \cap E$, thus $\operatorname{supp}(\nu) \subseteq V \cap E$ and $\|\mu - \nu\|_{PM} < \epsilon$. Finally, $\operatorname{supp}(\mu_n) \subseteq V_1$ if $n \ge l$, so $\operatorname{supp}(\nu) \subseteq \overline{V_l}$ for all l, so $\operatorname{supp}(\nu) \in G_l$ for all l, i.e. $\operatorname{supp}(\nu) \in G_l$.

To prove now Lemma 3.1, assume G is G_{δ} , $\mathfrak{I} \subseteq G \subseteq U_0$ towards a contradiction. We can assume G is hereditary, otherwise replace it by $G' = \{F \in K(\mathbf{T}) : \forall F' \in K(\mathbf{T}) (F' \subseteq F \Rightarrow F' \in G)\}$, which is also G_{δ} . Write $G = \bigcap_n G_n$ with G_n open hereditary, $G_n \supseteq G_{n+1}$. It is enough to verify (*) of Lemma A for each G_n . For that we need the following

LEMMA B. Let $E \in M_0^p$, $E \neq \emptyset$. Let μ be a probability measure with $\sup (\mu) \subseteq E \cap V$, V open. If $R(\mu) < \epsilon$ then there is a Rajchman probability measure ν with $\|\mu - \nu\|_{PM} < \epsilon$ and $\sup (\nu) \subseteq E \cap V$.

PROOF. Denote by P the set of Rajchman probability measures with support contained in $E \cap V$. Then, clearly, μ is in the weak*-closure of P. Since $R(\mu) < \epsilon$, an iterating-and-averaging argument as in [6], p. 276 shows that there is probability Rajchman measure ν with supp $(\nu) \subseteq E \cap V$ and $\|\mu - \nu\|_{PM} < \epsilon$.

To verify (*) for each G_n , it is enough to prove instead:

(+) If μ is a probability Rajchman measure with supp $(\mu) \subseteq E \cap V$, V open and $\epsilon > 0$, there is ν' a (not necessarily Rajchman) probability measure with supp $(\nu') \subseteq V \cap E$, supp $(\nu') \in G_n$ and $\|\mu - \nu'\|_{PM} < \epsilon/2$.

Because then supp $(\nu') \in K(V \cap V' \cap E)$, where V' is open and $K(V') \subseteq$

 G_n . Then by Lemma B, since $R(\nu') < \epsilon/2$, there is a probability Rajchman measure ν with $\|\nu - \nu'\|_{PM} < \epsilon/2$ and $\operatorname{supp}(\nu) \subseteq V \cap V' \cap E$, so $\|\mu - \nu\|_{PM} < \epsilon$, $\operatorname{supp}(\nu) \subseteq V \cap E$ and $\operatorname{supp}(\nu) \in G_n$.

To verify (+): Notice that the probability measures ν' with support in $\mathfrak{J} \cap K(E \cap V)$ ($\subseteq G_n \cap K(E \cap V)$) and with $R(\nu') < \epsilon/4$ form a convex set, say C. By the hypothesis of Lemma 3.1 on \mathfrak{J} they are weak*-dense among all probability measures with support in $K(E \cap V)$. By an iterating-and-averaging argument as in [6], p. 276 it follows that there is $\nu' \in C$ with $\|\mu - \nu'\|_{PM} < \epsilon/2$.

§4. Proof of Theorem 3

Let d be the metric on E. For $K, L \in K(E)$ let

$$\rho(K,L) = \sup\{d(x,L) : x \in K\}.$$

(This is *not* the metric of K(E).)

LEMMA 4.1. Let $I \subseteq K(E)$ be closed under finite unions. Let $K_n \in I$, $K \in I$ and $\rho(K_n, K) \to 0$ as $n \to \infty$. Then $L = K \cup (\bigcup_n K_n)$ is closed and $L \in I$.

PROOF. That L is closed is easy. We will show now that $L \in I$. For $S \subseteq \mathbb{N}$ let

$$F(S) = K \cup \left(\bigcup_{n \in S} K_n\right).$$

Again, F(S) is closed for all $S \subseteq \mathbb{N}$. Identifying $S \subseteq \mathbb{N}$ with its characteristic function, we claim that

$$F: 2^{\mathbb{N}} \to K(E)$$

is continuous. Indeed, if $S \upharpoonright m = T \upharpoonright m$ we have

$$F(S) = K \cup \left(\bigcup_{\substack{n < m \\ n \in S}} K_n\right) \cup \left(\bigcup_{\substack{n \ge m \\ n \in S}} K_n\right),$$

$$F(T) = K \cup \left(\bigcup_{\substack{n < m \\ n \in T}} K_n\right) \cup \left(\bigcup_{\substack{n \ge m \\ n \in T}} K_n\right),\,$$

and

$$\bigcup_{\substack{n < m \\ n \in S}} K_n = \bigcup_{\substack{n < m \\ n \in T}} K_n = F.$$

If $x \in K \cup F$, then d(x, F(T)) = 0. If

$$x \in F(S) - (K \cup F) \subseteq \bigcup_{\substack{n \ge m \\ n \in S}} K_n,$$

then $d(x, F(T)) \le d(x, K) \le \rho(K_n, K)$ for some $n \ge m$. So if $x \in F(S)$, $d(x, F(T)) \le \rho(K_n, K)$ for some $n \ge m$. Similarly, if $y \in F(T)$, $d(y, F(S)) \le \rho(K_n, K)$ for some $n \ge m$. Thus

$$\delta(F(S), F(T)) \stackrel{def}{=} the \ Hausdorff \ distance \ of \ F(S), \ F(T) \leq \sup_{n \geq m} \rho(K_n, K).$$

As $\rho(K_n, K) \to 0$ when $n \to \infty$, F is continuous.

Define now $\mathfrak{J} \subseteq P(\mathbb{N})$ by

$$S \in \mathcal{J} \Leftrightarrow F(S) \in I$$
.

Then \mathcal{G} is G_{δ} in $2^{\mathbb{N}}$. Also \mathcal{G} contains all the finite sets and thus $\mathcal{G} = \{\mathbb{N} - S : S \in \mathcal{G}\}$ contains all the cofinite sets. Also \mathcal{G} , \mathcal{G} are G_{δ} , thus they are dense G_{δ} in $2^{\mathbb{N}}$. So $\mathcal{G} \cap \mathcal{G} \neq \emptyset$, i.e. there is $S \subseteq \mathbb{N}$ with S, $\mathbb{N} - S \in \mathcal{G}$ so that $F(\mathbb{N}) = F(S) \cup F(\mathbb{N} - S) = L \in I$.

Let now $I \subseteq K(E)$ be a G_{δ} ideal. Define the following derivative on K(E):

$$K \mapsto K' = \{x \in K : \forall V \text{ open nbhd of } x : \overline{K \cap V} \notin I\}.$$

By iteration, define $K^{(\alpha)}$ by

$$K^{(0)} = K,$$

$$K^{(\alpha+1)} = (K^{(\alpha)})',$$

$$K^{(\lambda)} = \bigcap_{\alpha < \lambda} K^{(\alpha)}, \quad \lambda \text{ limit.}$$

Then easily

$$K \in I_{\sigma}$$
 iff $\exists \alpha < \omega_1 \ (K^{(\alpha)} = \emptyset)$.

Put for $K \in I_{\sigma}$,

$$|K| = \text{least } \alpha(K^{(\alpha)} = \emptyset).$$

We will show by induction on |K| that

$$K \in I_{\sigma} \Rightarrow K \in I$$
,

which completes the proof.

Assume it holds for all $K \in I_{\sigma}$, with $|K| < \alpha$. Fix then K with $|K| = \alpha$. Clearly, $\alpha = \beta + 1$ is a successor (unless $\alpha = 0$, in which case $K = \emptyset$ and we are done). As $K^{(\beta+1)} = \emptyset$, for every $x \in K^{(\beta)}$ there is an open nbhd V of X with $\overline{V \cap K^{(\beta)}} \in I$. For $n = 0, 1, 2, \ldots$ let V_n be an open nbhd of $K^{(\beta)}$ with $V_0 = E$, $\rho(\overline{V_n}, K^{(\beta)}) \le 1/n$, if $n \ge 1$ and $V_n \supseteq V_{n+1}$. Put $L_n = K \cap (\overline{V_n} - V_{n+1})$. Then L_n is closed and $L_n^{(\gamma)} \subseteq K^{(\gamma)} \cap (\overline{V_n} - V_{n+1})$ for each γ , so $L_n^{(\beta)} = \emptyset$, i.e. $|L_n| < \alpha$ and so $L_n \in I$. Since clearly $\rho(L_n, K^{(\beta)}) \le 1/n$, we have by the previous lemma that $K^{(\beta)} \cup (\bigcup_n L_n) = K \in I$ and the proof is complete.

REFERENCES

- 1. N. Bary, Sur l'unicité du développement trigonometrique, Fund. Math. 9 (1927), 62-115.
- 2. G. Debs and J. Saint Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier Grenoble 37(3) (1987), 217-239.
- 3. C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grund. Math. Wissen., Vol. 238, Springer-Verlag, New York, 1979.
 - 4. R. Kaufman, Fourier transforms and descriptive set theory, Mathematika 31 (1984), 336-339.
- 5. R. Kaufman, Absolutely convergent Fourier series and some classes of sets, Bull. Sci. Math., 2e série, 109 (1985), 363-372.
- 6. A. S. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., 128, Cambridge University Press, 1987.
- 7. A. S. Kechris, A. Louveau and W. H. Woodin, *The structure of σ-ideals of compact sets*, Trans. Am. Math. Soc. 301(1) (1987), 263–288.